

R8000 Series Communications Systems Analyzer

AUTOTUNE USER GUIDE

Portable Radios

Motorola APX™ 2000

Motorola APX™ 4000

Motorola APX™ 6000

Motorola APX™ 7000

Mobile Radios

Motorola APX™ 2500

Motorola APX™ 4500

Motorola APX™ 6500

Motorola APX™ 7500

Freedom Communication Technologies 2002 Synergy Blvd, Suite 200 Kilgore, Texas 75662

Copyright © 2015 Freedom Communication Technologies All Rights Reserved Printed in U.S.A.

CG-1215 Rev. C

AUTOTUNE™ SOFTWARE LICENSE AGREEMENT

The software license agreement governing use of the R8000 Series Communications Systems Analyzer AutoTune™ software is located in CG-1365 R8000 Series Communications Systems Analyzer Operator's Manual.

TRADEMARKS

The Freedom Communication Technologies logo and Freedom Communication Technologies are registered ® trademarks of Freedom Communication Technologies.

MOTOROLA, MOTO, MOTOROLA SOLUTIONS and the Stylized M logo are trademarks or registered trademarks of Motorola Trademark Holdings, LLC and are used under license. All other trademarks are the property of their respective owners. © 2011–2013 Motorola Solutions, Inc. All rights reserved.

OpenG License

Copyright (c) 2002, Cal-Bay Systems, Inc. <info@calbay.com>

Copyright (c) 2002, Jean-Pierre Drolet <drolet jp@hotmail.com>

Copyright (c) 2002-2007, Jim Kring < jim@jimkring.com>

Copyright (c) 2002-2005, Rolf Kalbermatter < rolf.kalbermatter@citeng.com>

Copyright (c) 2003-2004, Paul F. Sullivan <Paul@SULLutions.com>

Copyright (c) 2004, Enrique Vargas <vargas@visecurity.com>

Copyright (c) 2004. Heiko Fettig <heiko.fettig@gmx.net>

Copyright (c) 2004, Michael C. Ashe <michael.ashe@imaginatics.com>

Copyright (c) 2005-2006, MKS Instruments, Inc., author: Doug Femec

<doug femec@mkinst.com>, IM dafemec

Copyright (c) 2006, JKI <info@jameskring.com>

Copyright (c) 2006, JKI <info@jameskring.com>; Authors: Jim Kring

<jim@jimkring.com>, Philippe Guerit <pim labview@yahoo.com>

Copyright (c) 2007, JKI <info@jameskring.com> (Author: Jim Kring

<jim.kring@jameskring.com>)

Copyright (c) 2008, Ton Plomp <t.c.plomp@gmail.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

 Neither the name of the SciWare, James Kring, Inc., nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

EXPORT CONTROL

EXPORT CONTROL WARNING – Do not disclose or provide this document or item (including its contents) to non-U.S. Citizens or non-U.S. Permanent Residents, or transmit this document or item (including its contents) outside the U.S. without the written permission of Freedom Communication Technologies and required U.S. Government export approvals.

TABLE OF CONTENTS

1. Intr	oduction	1
2. Sco	ope	1
3. Mo	torola APX™ Portable Radio Test Setup	2
3.1.	APX™ Test Setup	2
4. Mo	torola APX™ Portable Alignment and Test Descriptions	3
4.1.	Reference Frequency	
4.2.	TX Power Out	
4.3.	Deviation Balance	
4.4.	Distortion	8
4.5.	Sensitivity (SINAD)	
4.6.	Noise Squelch Threshold	
4.7.	P25 Tx Tests	
4.8.	Digital Sensitivity (BER)	
4.9.	Internal Voice Modulation	
	External Voice Modulation	
	torola APX™ Mobile Radio Test Setup	
5.1.	Motorola APX™ Mobile Test Setup	
5.2.	Motorola APX™ Mobile High Power Test Setup	
	torola APX™ Mobile Alignment and Test Descriptions	
6.1.	Reference Frequency	
6.2.	TX Power Out	
6.3.	Deviation Balance	
6.4.	Distortion	
6.5.	Sensitivity (SINAD)	
6.6.	Noise Squelch Threshold	
6.7.	P25 Tx Tests.	
6.8.	Digital Sensitivity (BER)	
6.9.	Voice Modulation	
	sic Troubleshooting	
	oport Information	
	Technical Support	
	Sales Support	
	ferences	
APPEN		
	DIX B. Sample Test Result Report	
APPEN		
LIS [.]	T OF FIGURES	
	B-1. APX™ Portable Test Setup Diagram	2
	4-1. Place keyed radio next to analyzer speaker	

AutoTune™ User Guide

Figure 4-2. Adjust analyzer volume until about 4 kHz deviation is measured	14
Figure 5-1. Motorola APX™ Mobile Test Setup Diagram	16
Figure 5-2. Motorola APX™ Mobile High Power Test Setup Diagram	17
Figure 6-1. AutoTune prompt when test/alignment requires switching bands	18
Figure 6-2. Place keyed microphone next to analyzer speaker	30
Figure 6-3. Adjust analyzer volume until about 4 kHz deviation is measured	31
Figure B-1. Sample Test Result Report	B-1

LIST OF TABLES

Table 4-1. Analyzer Configuration for Reference Frequency	3
Table 4-2. Reference Frequency alignment results	
Table 4-3. Reference Frequency test results	4
Table 4-4. Analyzer Configuration for TX Power Out	5
Table 4-5. Motorola specified target power	
Table 4-6. Power Characterization Points alignment results	5
Table 4-7. TX Power Out alignment results	
Table 4-8. TX Power Out test results	6
Table 4-9. Analyzer Configuration for Deviation Balance test, alignment	7
Table 4-10. Deviation Balance alignment results	7
Table 4-11. Deviation Balance test results	
Table 4-12. Analyzer Configuration for Distortion Test	8
Table 4-13. Distortion test results	8
Table 4-14. Analyzer Configuration for Sensitivity (SINAD) test	9
Table 4-15. Sensitivity (SINAD) test results	
Table 4-16. Analyzer Configuration for Noise Squelch Threshold test	10
Table 4-17. Noise Squelch Threshold test results	
Table 4-20. Analyzer Configuration for P25 Tx Tests	11
Table 4-21. P25 Modulation Fidelity test results	
Table 4-22. P25 Symbol Deviation test results	11
Table 4-18. Analyzer Configuration for Digital Sensitivity (BER) test	12
Table 4-19. Digital Sensitivity (BER) test results	
Table 4-20. Analyzer Configuration for Internal Voice Modulation test	
Table 4-21. Internal Voice Modulation test results	
Table 4-22. Analyzer Configuration for External Voice Modulation test	
Table 4-23. External Voice Modulation test results	
Table 6-1. Analyzer Configuration for Reference Frequency	
Table 6-2. Reference Frequency alignment results	
Table 6-3. Reference Frequency test results	
Table 6-4. Analyzer Configuration for TX Power Out	21
Table 6-5. Power Detection Calibration alignment results	
Table 6-6. TX Power Out alignment results	
Table 6-7. TX Power Out test results	22
Table 6-8. Analyzer Configuration for Deviation Balance test, alignment	
Table 6-9. Deviation Balance alignment results	
Table 6-10. Deviation Balance test results	
Table 6-11. Analyzer Configuration for Distortion Test	
Table 6-12. Distortion test results	
Table 6-13. Analyzer Configuration for Sensitivity (SINAD) test	
Table 6-14. Sensitivity (SINAD) test results	
Table 6-15. Analyzer Configuration for Noise Squelch Threshold test	
Table 6-16. Noise Squelch Threshold test results	
Table 4-20. Analyzer Configuration for P25 Tx Tests	
Table 4-21. P25 Modulation Fidelity test results	28

AutoTune™ User Guide

Table 4-22. P25 Symbol Deviation test results	28
Table 6-17. Analyzer Configuration for Digital Sensitivity (BER) test	
Table 6-18. Digital Sensitivity (BER) test results	
Table 6-19. Analyzer Configuration for Voice Modulation test	
Table 6-20. Voice Modulation test results	
Table 7-1. AutoTune Troubleshooting Chart	
Table A-1. Default portable test limits	A-2
Table A-2. Default mobile test limits	

1. Introduction

The Freedom Communication Technologies R8000 Series Communications Systems Analyzer AutoTune™ (hereafter "AutoTune") is designed to provide an automated test and alignment solution for supported two-way radios.

2. Scope

This document is intended to provide information regarding the tests and alignments performed by AutoTune for Motorola APX™ portable and mobile two-way radios. This document is restricted to radio-specific information.

Please refer to the R8000 Series Communications System Analyzer Owner's Manual (CG-1365) for an overview and basic operating instructions for AutoTune itself.

3. Motorola APX™ Portable Radio Test Setup

In order to perform the test and alignment procedures, the APX™ Portable radio must be connected to the R8000 Communications Systems Analyzer as shown in the figure below.

Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform an alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

3.1. APX™ Test Setup

Refer to the diagram below for the proper test setup. Note that the correct setting for each RLN4460 test set control is highlighted in yellow.

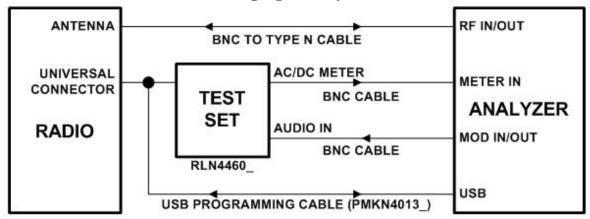


Figure 3-1. APX™ Portable Test Setup Diagram

4. Motorola APX™ Portable Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency. Test Frequencies are band- and mode -specific. A table of the frequencies used by each band may be found in the respective radio service manual. See the References section for more details.

Note: All analyzer Mode settings are Standard unless otherwise indicated.

4.1. Reference Frequency

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	30 dB

Table 4-1. Analyzer Configuration for Reference Frequency

4.1.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. Using a best linear fit algorithm, two frequency error measurements are taken at two different radio softpot values. These frequency error measurements are used to calculate the softpot value which minimizes frequency error. After programming this new softpot value into the radio, the radio softpot is fine tuned until minimum frequency error is detected. The frequency error is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error after alignment
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 4-2. Reference Frequency alignment results

4.1.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The final results are written to the log file.

AutoTune™ User Guide

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Min Limit	Minimum Limit (inclusive) for frequency error
Softpot	Radio softpot which yields Freq Error

Table 4-3. Reference Frequency test results

4.2. TX Power Out

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-4. Analyzer Configuration for TX Power Out

4.2.1. Alignment

The TX Power Out alignment is composed of two parts: Power Characterization Points tuning and TX Characterization tuning. Power Characterization Points tuning is performed first, and only during alignment; it is not performed during a test.

Power Characterization Points tuning adjusts the characterization points to account for the variability of the power detection circuitry between radios. The radio is placed into Test Mode and commanded to transmit at the first Test Frequency. The output level is measured and then adjusted until near to a band-specific output level defined by the APX[™] Tuner software help file.

Band	Rated Target Power
VHF	6.2 Watt
UHF	5.3 Watt
700MHz	2.65 Watt
800MHz	3.2 Watt
900MHz	TBD

Table 4-5. Motorola specified target power

This process is repeated for all test frequencies. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Meas Power within manufacturer limits
Frequency	Test Frequency
Meas Power	Measured radio output level
Target Power	Ideal Meas Power
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 4-6. Power Characterization Points alignment results

Power Characterization tuning characterizes the power output level of the radio. The radio is placed into Test Mode and commanded to transmit. Beginning at the lowest TX Test Frequency, the output level is measured at two different points for each TX Test Frequency. These measurements are used to calculate and program power coefficients use to normalize the radio power output level across the radio band as specified by the radio's basic service manual. After the alignment is complete, the power output level is measured again at each TX Test Frequency and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 4-7. TX Power Out alignment results

4.2.2. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the lowest TX Test Frequency, the output level is measured at each TX Test Frequency and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 4-8. TX Power Out test results

4.3. Deviation Balance

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	20 dB

Table 4-9. Analyzer Configuration for Deviation Balance test, alignment

4.3.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The radio generates an 80 Hz modulation tone and the deviation of this tone is measured with the analyzer. The radio then generates a 3 kHz modulation tone and the deviation of this tone is measured with the analyzer. The radio softpot is adjusted until the deviation difference between the first and second tones is as small as possible. This adjustment is performed for each TX Test Frequency and the percent difference is compared against test limits. The results for each TX Test Frequency are written to the log file.

Name	Description	
Result	Pass or Fail. Percent difference between low and high tone	
	deviation less than or equal to Variance.	
Frequency	Test Frequency	
Variance	Measured difference between low and high tone deviation	
Max Limit	Maximum passable percent difference (inclusive) between low and	
	high tone deviation	
Old Softpot	Original radio softpot setting	
New Softpot	Radio softpot setting after alignment	

Table 4-10. Deviation Balance alignment results

4.3.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The radio generates an 80 Hz modulation tone and the deviation of this tone is measured with the analyzer. The radio then generates a 3 kHz modulation tone and the deviation of this tone is measured with the analyzer. The percent difference is compared against test limits and written to the log file. This test is performed for each remaining TX Test Frequency.

Name	Description
Result	Pass or Fail. Percent difference between low and high tone
	deviation less than or equal to Variance.
Frequency	Test Frequency
Variance	Measured difference between low and high tone deviation
Max Limit	Maximum passable percent difference (inclusive) between low and high tone deviation

Table 4-11. Deviation Balance test results

4.4. Distortion

This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 1 kHz @ 3 kHz deviation	-50 dBm

Table 4-12. Analyzer Configuration for Distortion Test

4.4.1. Alignment

No alignment is needed.

4.4.2. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure distortion the volume is increased until sufficient to measure distortion. The audio signal's distortion level is then measured and compared to test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Distortion level within Max Limit, Min Limit
Frequency	Test Frequency
Distortion	Measured audio signal distortion level
Max Limit	Maximum Limit (inclusive) for Distortion to Pass

Table 4-13. Distortion test results

4.5. Sensitivity (SINAD)

This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 1 kHz @ 3kHz deviation	-50 dBm

Table 4-14. Analyzer Configuration for Sensitivity (SINAD) test

4.5.1. Alignment

No alignment is needed.

4.5.2. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure SINAD the volume is increased until sufficient to measure SINAD. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Sensitivity (SINAD) level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures 12 dB
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass

Table 4-15. Sensitivity (SINAD) test results

4.6. Noise Squelch Threshold

This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 1 kHz @ 3kHz deviation	-50 dBm

Table 4-16. Analyzer Configuration for Noise Squelch Threshold test

4.6.1. Alignment

No alignment is needed.

4.6.2. Test

The purpose of this procedure is to verify that the squelch circuit operation performs as expected, blocking noise but allowing stronger signals to be heard. The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure the unsquelched condition the volume is increased. Beginning at -125 dBm, the analyzer output level is slowly increased until the radio unsquelches OR is 6 dBm above the Max Limit, whichever comes first. The Unsquelch analyzer output level is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Noise Squelch Threshold level within Max Limit
Frequency	Test Frequency
Unsquelch	Analyzer output level at which the radio unsquelches
Max Limit	Maximum Limit (exclusive) for Noise Squelch Threshold to Pass

Table 4-17. Noise Squelch Threshold test results

4.7. **P25 Tx Tests**

NOTE: This test requires an analyzer with P25 Conventional (R8-P25) test mode capability.

The purpose of this procedure is to measure the radio transmitter performance at several given frequencies per the TIA/EIA 102.CAAB standard. These are tests only; there are no alignments.

RF Control	Port	Frequency	Modulation Type	Test Pattern
Monitor	RF IN/OUT	Test Frequency	C4FM	Standard Tx
				(O.153/V.52)

Table 4-18. Analyzer Configuration for P25 Tx Tests

4.7.1. Alignment

No alignment is needed.

4.7.2. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency, ready to transmit a C4FM-modulated signal to the analyzer. The radio is keyed and for each test frequency the following digital measurements are taken: Modulation Fidelity and Symbol Deviation. These measurement results are compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
Mod Fidelity	RMS error magnitude difference (%) between actual signal and ideal
	C4FM signal
Max Limit	Maximum Limit (inclusive) for Modulation Fidelity test to Pass

Table 4-19. P25 Modulation Fidelity test results

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
Symbol Dev	Deviation (Hz) from transmitting the Standard Tx test pattern
Min Limit	Minimum Limit (inclusive) for Symbol Deviation test to Pass
Max Limit	Maximum Limit (inclusive) for Symbol Deviation test to Pass

Table 4-20. P25 Symbol Deviation test results

4.8. Digital Sensitivity (BER)

NOTE: This test requires an analyzer with P25 Conventional test mode capability.

The purpose of this procedure is to measure the radio receiver's Bit Error Rate at a given frequency. The TIA/EIA standard BER rate is 5%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Frequency	Framed 1011 Hz Pattern,	-116.0 dBm
			2.83 kHz deviation	

Table 4-21. Analyzer Configuration for Digital Sensitivity (BER) test

4.8.1. Alignment

No alignment is needed.

4.8.2. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency, ready to receive a C4FM-modulated signal from the analyzer. Once BER synchronization is detected, the analyzer output level is decreased until a BER of 5% is measured. The analyzer output level at 5% BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
5% BER	Analyzer output level at which the radio BER measures 5%
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (BER) to Pass

Table 4-22. Digital Sensitivity (BER) test results

4.9. Internal Voice Modulation

The purpose of this procedure is to test the ability of the radio's internal microphone audio circuit to accurately transfer the received signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-23. Analyzer Configuration for Internal Voice Modulation test

4.9.1. Alignment

No alignment is needed.

4.9.2. Test

The radio is placed into Test Mode at the lowest TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The user is instructed to key the connected radio and place it next to the analyzer speaker (see Figure 4-1). The user is also instructed to adjust the analyzer volume until about 4 kHz deviation is seen on the analyzer display (see Figure 4-2). The deviation level is then measured by the analyzer and the user is instructed when to un-key the radio. The measured deviation is compared against test limits and the final results are written to the log file.

Figure 4-1. Place keyed radio next to analyzer speaker.

AutoTune™ User Guide

Figure 4-2. Adjust analyzer volume until about 4 kHz deviation is measured.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 4-24. Internal Voice Modulation test results

4.10. External Voice Modulation

The purpose of this procedure is to test the ability of an external microphone attached to the radio to effectively transfer the received signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-25. Analyzer Configuration for External Voice Modulation test

4.10.1. Alignment

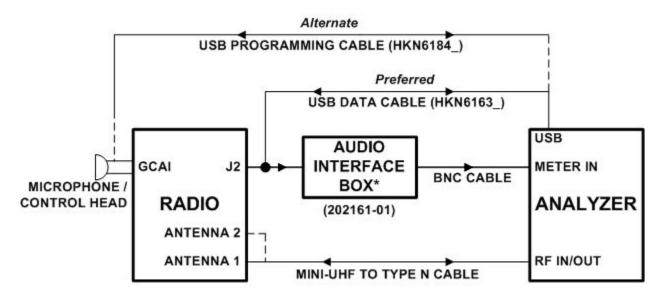
No alignment is needed.

4.10.2. Test

The radio is placed into Test Mode at the lowest TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The analyzer generates a 1 kHz signal at 800 mV into the radio's external microphone accessory port via the radio test set. The radio is commanded to transmit and the resulting deviation level is then measured by the analyzer. The measured deviation is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 4-26. External Voice Modulation test results


5. Motorola APX™ Mobile Radio Test Setup

In order to perform the test and alignment procedures, the APX™ Mobile radio must be connected to the R8000 Communications Systems Analyzer as shown in the figure below.

CAUTION: Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform the indicated alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

5.1. Motorola APX™ Mobile Test Setup

Refer to the diagram below for the proper test setup.

^{*}Required only for Distortion, Sensitivity (SINAD), and Noise Squelch Threshold tests.

Figure 5-1. Motorola APX™ Mobile Test Setup Diagram

5.2. Motorola APX™ Mobile High Power Test Setup

Refer to the diagram below for the proper test setup.

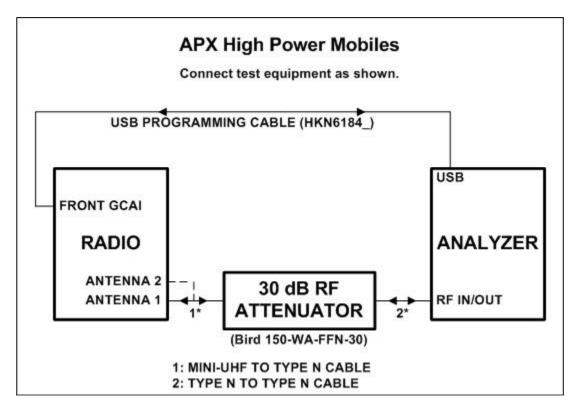


Figure 5-2. Motorola APX™ Mobile High Power Test Setup Diagram

6. Motorola APX™ Mobile Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency that are band and mode specific. A table of the frequencies used by each band may be found in the respective radio service manual. See the References section for more details. **Note**: All analyzer Mode settings are Standard unless otherwise indicated.

Dual-Band: Some Motorola APX[™] Mobile radios are dual-band capable. Additional notes for radio models configured with two bands are included in the following sections. If the radio under test is configured with a single band, these notes are not applicable.

Dual-Band: Dual Band equipped radios have two RF connectors at the rear of the radio. They are labeled on the top and on the rear of the radio to identify which band they should be used with. During most tests and alignments, it will be necessary to change the test setup cabling to test both bands. The test operator will be prompted to connect the RF cable to the appropriate RF Output port on the radio.

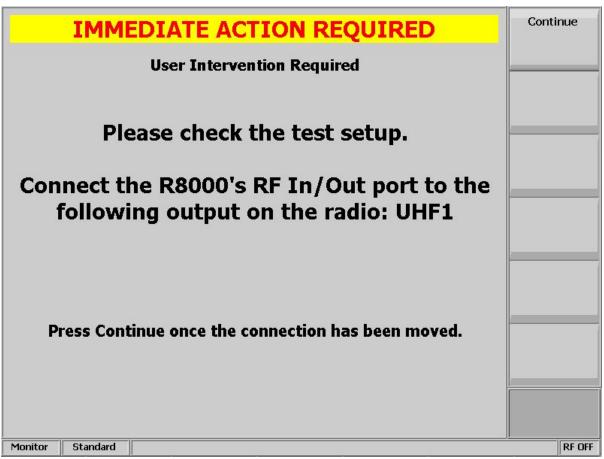


Figure 6-1. AutoTune prompt when test/alignment requires switching bands

6.1. Reference Frequency

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	20 dB

Table 6-1. Analyzer Configuration for Reference Frequency

6.1.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. Using a best linear fit algorithm, two frequency error measurements are taken at two different radio softpot values. These frequency error measurements are used to calculate the softpot value which minimizes frequency error. After programming this new softpot value into the radio, the radio softpot is fine tuned until minimum frequency error is detected. The frequency error is compared against test limits and the final results written to the log file.

Dual-Band: This alignment is only performed at a single test frequency. The test frequency is the highest test frequency for the highest frequency band.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error after alignment
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-2. Reference Frequency alignment results

6.1.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The final results are written to the log file.

Dual-Band: This test is only performed at a single test frequency. The test frequency is the highest test frequency for the highest frequency band.

AutoTune™ User Guide

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Softpot	Radio softpot which yields Freq Error

Table 6-3. Reference Frequency test results

6.2. TX Power Out

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-4. Analyzer Configuration for TX Power Out

6.2.1. Alignment

The TX Power Out alignment is composed of two parts: Power Detection Calibration and TX Power Out. Power Detection Calibration is performed first, and only during alignment; it is not performed during a test.

Power Detector Calibration tunes the radio power detector to minimize the power output variation across radios. The radio is placed into Test Mode and commanded to transmit at a mid-band Test Frequency. The output level is measured and then adjusted until near to a band-specific target output level supplied by the radio. The final results are written to the log file.

Dual-Band: This alignment is performed consecutively for all test frequencies in both bands.

Name	Description
Result	Pass or Fail. Meas Power & New Softpot within manufacturer limits
Frequency	Test Frequency
Meas Power	Measured radio output level
Target Power	Ideal Meas Power
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-5. Power Detection Calibration alignment results

Power Characterization tuning characterizes the power output level of the radio. The radio is placed into Test Mode and commanded to transmit. Beginning at the lowest TX Test Frequency, the output level is measured at two different points for each TX Test Frequency. These measurements are used to calculate and program power coefficients use to normalize the radio power output level across the radio band as specified by the radio's basic service manual. After the alignment is complete, the power output level is measured again at each TX Test Frequency and compared against test limits. The final results are written to the log file.

Dual-Band: This alignment is performed consecutively for all test frequencies in both bands.

AutoTune™ User Guide

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 6-6. TX Power Out alignment results

6.2.2. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the lowest TX Test Frequency, the output level is measured at each TX Test Frequency and compared against test limits. The final results are written to the log file.

Dual-Band: This test is performed consecutively for all test frequencies in both bands.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 6-7. TX Power Out test results

6.3. Deviation Balance

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	30 dB

Table 6-8. Analyzer Configuration for Deviation Balance test, alignment

6.3.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The radio generates an 80 Hz modulation tone and the deviation of this tone is measured with the analyzer. The radio then generates a 3 kHz modulation tone and the deviation of this tone is measured with the analyzer. The radio softpot is adjusted until the deviation difference between the first and second tones is within test limits. This adjustment is performed for each TX Test Frequency and the percent difference is compared against test limits. The results for each TX Test Frequency are written to the log file.

Dual-Band: This alignment is performed consecutively for all test frequencies in both bands.

Name	Description
Result	Pass or Fail. Percent difference between low and high tone deviation less than or equal to Variance.
Frequency	Test Frequency
Variance	Measured difference between low and high tone deviation
Max Limit	Maximum passable percent difference (inclusive) between low and high tone deviation
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 6-9. Deviation Balance alignment results

6.3.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The radio generates an 80 Hz modulation tone and the deviation of this tone is measured with the analyzer. The radio then generates a 3 kHz modulation tone and the deviation of this tone is measured with the analyzer. The percent difference is compared against test limits and written to the log file. This test is performed for each remaining TX Test Frequency.

Dual-Band: This test is performed consecutively for all test frequencies in both bands.

AutoTune™ User Guide

Name	Description		
Result	Pass or Fail. Percent difference between low and high tone		
	deviation less than or equal to Variance.		
Frequency	Test Frequency		
Variance	Measured difference between low and high tone deviation		
Max Limit	Maximum passable percent difference (inclusive) between low and		
	high tone deviation		
Softpot	Radio softpot setting		

Table 6-10. Deviation Balance test results

6.4. Distortion

Note: Motorola APX[™] Mobile High Power models are not supported for this test.

This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 1 kHz @ 3 kHz deviation	-50 dBm

Table 6-11. Analyzer Configuration for Distortion Test

6.4.1. Alignment

No alignment is needed.

6.4.2. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure distortion the volume is increased until sufficient to measure distortion. The audio signal's distortion level is then measured and compared to test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Distortion level within Max Limit, Min Limit
Frequency	Test Frequency
Distortion	Measured audio signal distortion level
Max Limit	Maximum Limit (inclusive) for Distortion to Pass

Table 6-12. Distortion test results

6.5. Sensitivity (SINAD)

Note: Motorola APX[™] Mobile High Power models are not supported for this test.

This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 1 kHz @ 3kHz deviation	-50 dBm

Table 6-13. Analyzer Configuration for Sensitivity (SINAD) test

6.5.1. Alignment

No alignment is needed.

6.5.2. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure SINAD the volume is increased until sufficient to measure SINAD. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Sensitivity (SINAD) level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures 12 dB
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass

Table 6-14. Sensitivity (SINAD) test results

6.6. Noise Squelch Threshold

Note: Motorola APX[™] Mobile High Power models are not supported for this test.

This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 1 kHz @ 3kHz deviation	-50 dBm

Table 6-15. Analyzer Configuration for Noise Squelch Threshold test

6.6.1. Alignment

No alignment is needed.

6.6.2. Test

The purpose of this procedure is to verify that the squelch circuit operation performs as expected, blocking noise but allowing stronger signals to be heard. The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure the unsquelched condition the volume is increased. Beginning at -125 dBm, the analyzer output level is slowly increased until the radio unsquelches OR is 6 dBm above the Max Limit, whichever comes first. The analyzer output level is compared against test limits and the final results written to the log file. The radio audio output level is tested and the volume is increased if insufficient to measure unsquelch condition. Beginning at -125 dBm, the analyzer output level is slowly increased until the radio unsquelches OR 6 dBm above the Max Limit, whichever comes first. The unsquelch output level is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Noise Squelch Threshold level within Max Limit
Frequency	Test Frequency
Unsquelch	Analyzer output level at which the radio unsquelches
Max Limit	Maximum Limit (exclusive) for Noise Squelch Threshold to Pass

Table 6-16. Noise Squelch Threshold test results

6.7. P25 Tx Tests

NOTE: This test requires an analyzer with P25 Conventional (R8-P25) test mode capability.

The purpose of this procedure is to measure the radio transmitter performance at several given frequencies per the TIA/EIA 102.CAAB standard. These are tests only; there are no alignments.

RF Control	Port	Frequency	Modulation Type	Test Pattern
Monitor	RF IN/OUT	Test Frequency	C4FM	Standard Tx
				(O.153/V.52)

Table 6-17. Analyzer Configuration for P25 Tx Tests

6.7.1. Alignment

No alignment is needed.

6.7.2. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency, ready to transmit a C4FM-modulated signal to the analyzer. The radio is keyed and for each test frequency the following digital measurements are taken: Modulation Fidelity and Symbol Deviation. These measurement results are compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
Mod Fidelity	RMS error magnitude difference (%) between actual signal and ideal C4FM signal
	<u> </u>
Max Limit	Maximum Limit (inclusive) for Modulation Fidelity test to Pass

Table 6-18. P25 Modulation Fidelity test results

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
Symbol Dev	Deviation (Hz) from transmitting the Standard Tx test pattern
Min Limit	Minimum Limit (inclusive) for Symbol Deviation test to Pass
Max Limit	Maximum Limit (inclusive) for Symbol Deviation test to Pass

Table 6-19. P25 Symbol Deviation test results

6.8. Digital Sensitivity (BER)

NOTE: This test requires an analyzer with P25 Conventional test mode capability.

The purpose of this procedure is to measure the radio receiver's Bit Error Rate at a given frequency. The TIA/EIA standard BER rate is 5%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Frequency	Framed 1011 Hz Pattern,	-116.0 dBm
			2.83 kHz deviation	

Table 6-20. Analyzer Configuration for Digital Sensitivity (BER) test

6.8.1. Alignment

No alignment is needed.

6.8.2. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency, ready to receive a C4FM-modulated signal from the analyzer. Once BER synchronization is detected, the analyzer output level is decreased until a BER of 5% is measured. The analyzer output level at 5% BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
5% BER	Analyzer output level at which the radio BER measures 5%
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (BER) to Pass

Table 6-21. Digital Sensitivity (BER) test results

6.9. Voice Modulation

Note: Motorola APX™ Mobile High Power models are not supported for this test.

The purpose of this procedure is to test the ability of the radio's external microphone audio circuit to accurately transfer the received microphone signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-22. Analyzer Configuration for Voice Modulation test

6.9.1. Alignment

No alignment is needed.

6.9.2. Test

The radio is placed into Test Mode at the lowest TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The user is instructed to key the connected radio microphone and place the microphone next to the analyzer speaker (seeFigure 6-2). The user is also instructed to adjust the analyzer volume until about 4 kHz deviation is seen on the analyzer display (seeFigure 6-3). The deviation level is then measured by the analyzer and the user is instructed when to un-key the microphone. The measured deviation is compared against test limits and the final results are written to the log file.

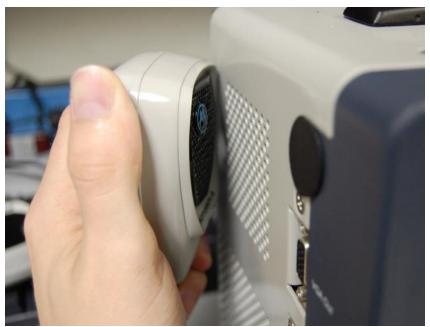


Figure 6-2. Place keyed microphone next to analyzer speaker.

AutoTune™ User Guide

Figure 6-3. Adjust analyzer volume until about 4 kHz deviation is measured.

Dual-Band: This test is only performed for the lowest RX Test Frequency in the lowest frequency band.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 6-23. Voice Modulation test results

7. Basic Troubleshooting

Symptom	Possible Cause(s)	Possible Solution(s)
Radio repeatedly fails	Serial link corruption.	Retry communicating with the
communication		radio after each of the following
initialization.		steps:
		 Power cycle the radio.
		 Restart the analyzer.
	Analyzer disk	Contact Freedom Communication
	corruption.	Technologies technical support.
Radio won't power up.	Loose HKN6163_	Verify cable connection is OK.
	cable connection.	
	Motorola CPS	Use Motorola CPS software to set
	Ignition Switch	Radio Wide, Advanced, Ignition
	setting.	Switch setting to "Blank". This
		setting lets radio power up for
		testing without an ignition signal
		present. Be sure to return this
		setting to its original value when
		testing completed.
Radio consistently fails TX	APX Family CPS	Using APX Family CPS, adjust
Power Out test and/or	Transmit Power	Codeplug Configuration
alignment.	Level settings limiting	Mode>Radio Wide>Transmit
	radio output power.	Power Level settings to factory
		defaults. This change lets radio
		output expected power levels for
		correct AutoTune TX Power Out
	202	testing and alignment.
	DC Power supply	Adjust DC power supply current
	current limiting	limit to about 3 Amps.
	preventing portable	
	radio from getting	
	adequate current.	

Table 7-1. AutoTune Troubleshooting Chart

8. Support Information

8.1. Technical Support

Telephone/Fax: 844.903.7333 Email: service@freedomcte.com

Web: freedomcte.com/service-support/

8.2. Sales Support

Telephone/Fax: 844.903.7333 Email: sales@freedomcte.com Web: freedomcte.com/sales/

9. References

ASTRO® APX® 5000/ APX® 6000/ APX® 6000Li/ APX® 6000XE Digital Portable Radios Basic Service Manual (68012002028-C)

ASTRO® APX™ 7000 VHF/700–800 MHz/UHF1/UHF2 Digital Portable Radios Basic Service Manual (6875962M01-D)

APX 6500, APX7500, 03, 05 & 09 Basic Service Manual (6875964M01-C)

APPENDIX A. Test Limits

The factory limits contain the default limits as defined by the radio manufacturer and generally should not be modified. However, if extenuating circumstances cause a need to modify the limits this is accommodated by AutoTune. Refer to the R8000 Series Communications System Analyzer Owner's Manual (CG-1365) for modification instructions.

The following tables list the default test limits for each APX radio model supported by AutoTune.

Section	Test Name	Limit	Default Value
4.1	Reference Frequency	Reference Frequency Align	Min=-100 Hz
			Max= 100 Hz
4.1	Reference Frequency	Reference Frequency Test VHF	Min= -2 ppm
			Max= 2 ppm
		Reference Frequency Test UHF1	Min= -2 ppm
			Max= 2 ppm
		Reference Frequency Test UHF2	Min= -2 ppm
			Max= 2 ppm
		Reference Frequency Test 700-	Min= -1.5 ppm
		800MHz	Max= 1.5 ppm
		Reference Frequency Test 900MHz	Min= -1.5 ppm
4.0	TV Davis Out	TV Dames VIIIE	Max= 1.5 ppm
4.2	TX Power Out	TX Power VHF	Min= 6.0 W
		TX Power UHF1	Max= 6.4 W Min= 5.3 W
		1X Power Unr I	Max= 5.5 W
		TX Power UHF2	Min= 5.3 W
		TX FOWER OTH 2	Max= 5.5 W
		TX Power 700MHz	Min= 2.6 W
		TX T OWCI 7 OOIVII IZ	Max= 2.8 W
		TX Power 800MHz	Min= 3.2 W
		174 1 6 W 61 6 6 6 W 11 12	Max= 3.4 W
		TX Power 900MHz	Min= 2.4 W
			Max= 2.6 W
4.3	Deviation Balance	Deviation Balance	Max= 1.5 %
4.4	Distortion	Distortion	Max= 3 %
4.5	Sensitivity (SINAD)	Sensitivity VHF	Max= -116 dBm
		Sensitivity UHF1	Max= -116 dBm
		Sensitivity UHF2	Max= -116 dBm
		Sensitivity 700-800MHz	Max= -116 dBm
		Sensitivity 900MHz	Max= -116 dBm
4.6	Noise Squelch Threshold	Noise Squelch	Max= -116 dBm
4.7	P25 Tx Tests	Modulation Fidelity	Max=5%
		Symbol Deviation	Min=1620 Hz
			Max=1980 Hz
4.8	Digital Sensitivity (BER)	BER VHF	Max= -116 dBm
		BER UHF1	Max= -116 dBm
		BER UHF2	Max= -116 dBm
		BER 700-800MHz	Max= -116 dBm
		BER 900MHz	Max= -116 dBm
4.9	Internal Voice Modulation	Internal Voice Modulation	Min= 4.1 kHz
			Max= 5.0 kHz
		Internal Voice Modulation 12.5 kHz	Min= 2.1 kHz
			Max= 2.5 kHz
4.10	External Voice Modulation	External Voice Modulation	Min= 4.1 kHz
		E	Max= 5.0 kHz
		External Voice Modulation 12.5 kHz	Min= 2.1 kHz
			Max= 2.5 kHz

Table A-1. Default portable test limits.

Section	Test Name	Limit	Default Value
6.1	Reference Frequency	Reference Frequency Align VHF	Min= -150 Hz
		. , ,	Max= 150 Hz
		Reference Frequency Align UHF1	Min= -150 Hz
		. , ,	Max= 150 Hz
		Reference Frequency Align UHF2	Min= -150 Hz
			Max= 150 Hz
		Reference Frequency Align 700-	Min= -100 Hz
		800MHz	Max= 100 Hz
		Reference Frequency Test VHF	Min= -2 ppm
			Max= 2 ppm
		Reference Frequency Test UHF1	Min= -2 ppm
			Max= 2 ppm
		Reference Frequency Test UHF2	Min= -2 ppm
			Max= 2 ppm
		Reference Frequency Test 700-	Min= -1.5 ppm
	TYP	800MHz	Max= 1.5 ppm
6.2	TX Power Out	TX Power VHF	Min= 50 W
		TV Dames VIIIE I link Dames	Max= 57 W
		TX Power VHF High Power	Min= 100 W
		TX Power UHF1	Max= 120 W Min= 40 W
		IX Power UHF I	Max= 48 W
		TX Power UHF1 High Power	Min= 100 W
		TX Fower OffF1 High Fower	Max= 120 W
		TX Power UHF2 Band1	Min= 45 W
		1X T OWER OTH 2 Band I	Max= 55 W
		TX Power UHF2 Band2	Min= 40 W
		TAT GWGF GF III Z Zamaz	Max= 48 W
		TX Power UHF2 Band3	Min= 24.5 W
			Max= 30.5 W
		TX Power 700 MHz	Min= 31.5 W
			Max= 34.7 W
		TX Power 800 MHz	Min= 36.6 W
			Max= 40.5 W
6.3	Deviation Balance	Deviation Balance	Max= 1 %
6.4	Distortion	Distortion	Max= 3 %
6.5	Sensitivity (SINAD)	Sensitivity VHF	Max= -117.4 dBm
		Sensitivity UHF1	Max= -117.4 dBm
		Sensitivity UHF2	Max= -117.4 dBm
		Sensitivity 700-800MHz	Max= -119 dBm
6.6	Noise Squelch Threshold	Noise Squelch	Max= -116 dBm
6.7	P25 Tx Tests	Modulation Fidelity	Max=5%
		Symbol Deviation	Min=1620 Hz
			Max=1980 Hz
6.8	Digital Sensitivity (BER)	BER VHF	Max= -117.4 dBm
		BER UHF1	Max= -117.4 dBm
		BER UHF2	Max= -117.4 dBm
		BER 700-800MHz	Max= -119 dBm
6.9	Voice Modulation	Voice Modulation	Min= 4.1 kHz
			Max= 5.0 kHz

Table A-2. Default mobile test limits.

APPENDIX B. Sample Test Result Report

		Test I	Result Report			
Model #: Serial #:	M30TSS9PW1AN : 656CMF3277		Date/Time: Operator ID:	6/18/2012 4:33 A. Technician	PM	
Comments:	:					
	Frequency Test					
Result	Frequency	Freq Error	Min Limit	Max Limit 470 Hz	Softpot	
Pass	469.9875 MHz	3 Hz	-470 Hz	470 Hz	1186	
TX Power	Out Test					
Result	Frequency	Power Out	Min Limit	Max Limit		
Pass Pass Pass Pass	136.0125 MHz 140.7625 MHz 145.5125 MHz 150.2625 MHz	56.7 W 56.2 W 56.4 W 56.9 W	Min Limit 50.0 w 40.0 w	57.0 W 57.0 W 57.0 W 57.0 W		
Pass	154.9875 MHZ	56.0 W	50.0 W	57.0 W		
Pass	159.7625 MHZ	56.2 W	50.0 W	57.0 W		
Pass	169.2625 MHZ	56.2 W	50.0 W	57.0 W		
rass Pass	1/3.98/5 MHZ 380.0125 MHZ	56.8 W 45.1 W	50.0 W 40.0 W	57.0 W 48.0 W		
Pass Pass	389.0125 MHz 405.0125 MHz	45.6 W 45.0 W	40.0 W 40.0 W	48.0 W 48.0 W		
Pass	415.0125 MHz	45.1 W	40.0 W	48.0 W		
Pass	425.0125 MHZ	45.1 W	40.0 W	48.0 W		
Pass Pass	440.0125 MHz 455.0125 MHz	44.9 W 44.5 W	40.0 W 40.0 W	48.0 W 48.0 W		
Pass Pass	465.0125 MHz 469.9875 MHz	44.1 W 44.5 W	40.0 W 40.0 W	48.0 W 48.0 W		
Deviation	n Balance Test					
Result	Frequency	Low Tone	High Tone	Variance 0.1 % 0.2 % 0.2 % 0.0 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.2 % 0.1 % 0.3 % 0.2 % 0.1 % -0.1 % 0.3 % 0.2 % 0.1 %	Max Limit	Softp
Pass	469.9875 MHz	2.976 kHz	2.979 kHz	0.1 %	+/-1.0 %	18226
Pass	455.0125 MHZ	2.975 kHz	2.981 kHz	0.2 %	+/-1.0 %	19267
Pass Pass	440.0125 MHZ 425.0125 MHZ	2.975 KHZ 2.976 KHZ	2.975 KHZ 2.979 KHZ	0.0 % 0.1 %	+/-1.0 % +/-1.0 %	18773
Pass Pass	424.9875 MHz 415.0125 MHz	2.977 kHz 2.976 kHz	2.979 kHz 2.979 kHz	0.1 %	+/-1.0 %	18723 19458
Pass	405.0125 MHz	2.976 kHz	2.979 kHz	0.1 %	+/-1.0 %	20018
Pass Pass	380.0125 MHZ	2.973 KHZ 2.974 KHZ	2.986 kHz	0.4 %	+/-1.0 %	19080
Pass Pass	173.9875 MHZ 169.2625 MHZ	2.969 kHz 2.970 kHz	2.973 kHz 2.980 kHz	0.1 % 0.3 %	+/-1.0 % +/-1.0 %	23485 22075
Pass	164.5125 MHZ	2.971 kHz	2.977 kHz	0.2 %	+/-1.0 %	20996
Pass	155.0125 MHZ	2.969 kHz	2.966 kHz	-0.1 %	+/-1.0 %	23806
Pass Pass	154.9875 MHz 150.2625 MHz	2.971 kHz 2.972 kHz	2.979 kHz 2.979 kHz	0.3 % 0.2 %	+/-1.0 % +/-1.0 %	23718 22039
Pass	145.5125 MHz	2.969 kHz	2.973 kHz	0.2 %	+/-1.0 %	20596
Pass	136.0125 MHz	2.972 kHz	2.970 kHz	-0.1 %	+/-1.0 %	24093
טוסנטו נונ	ni iest					
Result	Frequency 136.0625 MHz 380.0625 MHz	Distortion	Max Limit			
Pass Pass	380.0625 MHz	1.3 %	3.0 %			
	ity (SINAD) Tes	==				
Result	Frequency	12dB SINAD	Max Limit			
Pass Pass	136.0625 MHz 380.0625 MHz	-120.1 dBm -119.2 dBm	-117.4 dBm -117.4 dBm			
	uelch Threshold					
======= Result 	Frequency	Unsquelch	Max Limit			
Pass Pass	136.0625 MHz 380.0625 MHz	-118.8 dBm -117.4 dBm	-116.0 dBm -116.0 dBm			
Digital S	Sensitivity (BE	R) Test				
	Frequency	5% BER	Max Limit			
 Pass Pass	136.0625 MHz 380.0625 MHz	-119.8 dBm -119.3 dBm	-117.4 dBm -117.4 dRm			
	dulation Test	113.3 UDIII	III.T UDIII			
======= Result		Deviation	Min Limit	Max Limit		
Pass			4.100 kHz	5.000 kHz		
r 433	10.0123 MUZ	7.233 KMZ	4.100 KHZ	J.000 KHZ		

Tests performed by AutoTune - © 2012 Freedom Communication Technologies. All Rights Reserved.

Figure B-1. Sample Test Result Report

APPENDIX C. Revision History

1.18 Updates – Rev B	L. Shirey	1/26/15	M. Mullins	1/26/15	14473
Original Release – Rev A	B. Tanner	7/30/12	M. Mullins	7/30/12	12691
Rev. No/change	Revised By	Date	Approved By	Date	ECO#